Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Neuroimage Clin ; 36: 103253, 2022 Nov 07.
Artículo en Inglés | MEDLINE | ID: covidwho-2105659

RESUMEN

Human coronavirus disease 2019 (COVID-19) due to severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) has multiple neurological consequences, but its long-term effect on brain health is still uncertain. The cerebrovascular consequences of COVID-19 may also affect brain health. We studied the chronic effect of COVID-19 on cerebrovascular health, in relation to acute severity, adverse clinical outcomes and in contrast to control group data. Here we assess cerebrovascular health in 45 patients six months after hospitalisation for acute COVID-19 using the resting state fluctuation amplitudes (RSFA) from functional magnetic resonance imaging, in relation to disease severity and in contrast with 42 controls. Acute COVID-19 severity was indexed by COVID-19 WHO Progression Scale, inflammatory and coagulatory biomarkers. Chronic widespread changes in frontoparietal RSFA were related to the severity of the acute COVID-19 episode. This relationship was not explained by chronic cardiorespiratory dysfunction, age, or sex. The level of cerebrovascular dysfunction was associated with cognitive, mental, and physical health at follow-up. The principal findings were consistent across univariate and multivariate approaches. The results indicate chronic cerebrovascular impairment following severe acute COVID-19, with the potential for long-term consequences on cognitive function and mental wellbeing.

2.
Brain ; 145(11): 4097-4107, 2022 11 21.
Artículo en Inglés | MEDLINE | ID: covidwho-2017743

RESUMEN

COVID-19 is associated with neurological complications including stroke, delirium and encephalitis. Furthermore, a post-viral syndrome dominated by neuropsychiatric symptoms is common, and is seemingly unrelated to COVID-19 severity. The true frequency and underlying mechanisms of neurological injury are unknown, but exaggerated host inflammatory responses appear to be a key driver of COVID-19 severity. We investigated the dynamics of, and relationship between, serum markers of brain injury [neurofilament light (NfL), glial fibrillary acidic protein (GFAP) and total tau] and markers of dysregulated host response (autoantibody production and cytokine profiles) in 175 patients admitted with COVID-19 and 45 patients with influenza. During hospitalization, sera from patients with COVID-19 demonstrated elevations of NfL and GFAP in a severity-dependent manner, with evidence of ongoing active brain injury at follow-up 4 months later. These biomarkers were associated with elevations of pro-inflammatory cytokines and the presence of autoantibodies to a large number of different antigens. Autoantibodies were commonly seen against lung surfactant proteins but also brain proteins such as myelin associated glycoprotein. Commensurate findings were seen in the influenza cohort. A distinct process characterized by elevation of serum total tau was seen in patients at follow-up, which appeared to be independent of initial disease severity and was not associated with dysregulated immune responses unlike NfL and GFAP. These results demonstrate that brain injury is a common consequence of both COVID-19 and influenza, and is therefore likely to be a feature of severe viral infection more broadly. The brain injury occurs in the context of dysregulation of both innate and adaptive immune responses, with no single pathogenic mechanism clearly responsible.


Asunto(s)
Lesiones Encefálicas , COVID-19 , Gripe Humana , Humanos , Proteínas de Neurofilamentos , COVID-19/complicaciones , Biomarcadores , Autoanticuerpos , Inmunidad
3.
EClinicalMedicine ; 47: 101417, 2022 May.
Artículo en Inglés | MEDLINE | ID: covidwho-1944815

RESUMEN

Background: Preliminary evidence has highlighted a possible association between severe COVID-19 and persistent cognitive deficits. Further research is required to confirm this association, determine whether cognitive deficits relate to clinical features from the acute phase or to mental health status at the point of assessment, and quantify rate of recovery. Methods: 46 individuals who received critical care for COVID-19 at Addenbrooke's hospital between 10th March 2020 and 31st July 2020 (16 mechanically ventilated) underwent detailed computerised cognitive assessment alongside scales measuring anxiety, depression and post-traumatic stress disorder under supervised conditions at a mean follow up of 6.0 (± 2.1) months following acute illness. Patient and matched control (N = 460) performances were transformed into standard deviation from expected scores, accounting for age and demographic factors using N = 66,008 normative datasets. Global accuracy and response time composites were calculated (G_SScore & G_RT). Linear modelling predicted composite score deficits from acute severity, mental-health status at assessment, and time from hospital admission. The pattern of deficits across tasks was qualitatively compared with normal age-related decline, and early-stage dementia. Findings: COVID-19 survivors were less accurate (G_SScore=-0.53SDs) and slower (G_RT=+0.89SDs) in their responses than expected compared to their matched controls. Acute illness, but not chronic mental health, significantly predicted cognitive deviation from expected scores (G_SScore (p=​​0.0037) and G_RT (p = 0.0366)). The most prominent task associations with COVID-19 were for higher cognition and processing speed, which was qualitatively distinct from the profiles of normal ageing and dementia and similar in magnitude to the effects of ageing between 50 and 70 years of age. A trend towards reduced deficits with time from illness (r∼=0.15) did not reach statistical significance. Interpretation: Cognitive deficits after severe COVID-19 relate most strongly to acute illness severity, persist long into the chronic phase, and recover slowly if at all, with a characteristic profile highlighting higher cognitive functions and processing speed. Funding: This work was funded by the National Institute for Health Research (NIHR) Cambridge Biomedical Research Centre (BRC), NIHR Cambridge Clinical Research Facility (BRC-1215-20014), the Addenbrooke's Charities Trust and NIHR COVID-19 BioResource RG9402. AH is funded by the UK Dementia Research Institute Care Research and Technology Centre and Imperial College London Biomedical Research Centre. ETB and DKM are supported by NIHR Senior Investigator awards. JBR is supported by the Wellcome Trust (220258) and Medical Research Council (SUAG/051 G101400). VFJN is funded by an Academy of Medical Sciences/ The Health Foundation Clinician Scientist Fellowship. The views expressed are those of the authors and not necessarily those of the NHS, the NIHR or the Department of Health and Social Care.

5.
J Neurol ; 268(8): 2629-2655, 2021 Aug.
Artículo en Inglés | MEDLINE | ID: covidwho-1318755

RESUMEN

Neurological manifestations in pandemics frequently cause short and long-term consequences which are frequently overlooked. Despite advances in the treatment of infectious diseases, nervous system involvement remains a challenge, with limited treatments often available. The under-recognition of neurological manifestations may lead to an increase in the burden of acute disease as well as secondary complications with long-term consequences. Nervous system infection or dysfunction during pandemics is common and its enduring consequences, especially among vulnerable populations, are frequently forgotten. An improved understanding the possible mechanisms of neurological damage during epidemics, and increased recognition of the possible manifestations is fundamental to bring insights when dealing with future outbreaks. To reverse this gap in knowledge, we reviewed all the pandemics, large and important epidemics of human history in which neurological manifestations are evident, and described the possible physiological processes that leads to the adverse sequelae caused or triggered by those pathogens.


Asunto(s)
COVID-19 , Enfermedades del Sistema Nervioso , Humanos , Enfermedades del Sistema Nervioso/epidemiología , Enfermedades del Sistema Nervioso/etiología , Pandemias , SARS-CoV-2
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA